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Self-similar relaxation dynamics of a fluid wedge in a Hele-Shaw cell
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Let the interface between two immiscible fluids in a Hele-Shaw cell have, at t=0, a wedge shape. As a
wedge is scale-free, the fluid relaxation dynamics are self-similar. We find the dynamic exponent of this
self-similar flow and show that the interface shape is given by the solution of an unusual inverse problem of
potential theory. We solve this problem analytically for an almost flat wedge, and numerically otherwise. The
wedge solution is useful for analysis of pinch-off singularities.
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Interface dynamics between two immiscible fluids in a
Hele-Shaw cell have attracted great interest in the last two
decades. Most of the efforts have dealt with forced flows,
when a more viscous fluid is displaced by a less viscous
fluid. In the forced case a viscous fingering instability [1,2]
develops and brings about intricate issues of pattern selection
in a channel geometry [3-5], development of fractal structure
in a radial geometry [6], etc. The role of small surface ten-
sion in the theory of a forced Hele-Shaw flow is to introduce
regularization on small scales. This Rapid Communication
deals with an unforced Hele-Shaw (UHS) flow [7—11], where
surface tension at the fluid interface is the only driving fac-
tor. The pertinent free boundary problem here is noninte-
grable and, because of its nonlocality, hard to analyze. To our
knowledge, the only known analytical solutions to this class
of problems are (i) a linear analysis of the dynamics of a
slightly deformed flat or circular interface [1,2] and (ii) a
recent asymptotic scaling analysis of the dynamics of a long
stripe of an inviscid fluid trapped in a viscous fluid [11]. To
get more insight into the physics of UHS flows, we address
here the case when one of the fluids at =0 has the form of a
wedge. In this case the flow is self-similar. Building on this
simplification, we recast the problem into an unusual inverse
problem of potential theory. We solve this problem analyti-
cally for an almost flat wedge and numerically for several
other wedge angles. Finally, we use a wedge solution for
analysis of pinch-off events of the UHS flow, which has at-
tracted much interest in theory and experiment [8,9].

Governing equations and self-similarity. Let one of the
fluids have a negligible viscosity, so that the pressure inside
this fluid is constant and can be taken zero. The velocity of
the viscous fluid is v(r,f)=—(b*/12u) V p(r,t), where p is
the pressure, u is the dynamic viscosity, and b is the plate
spacing [1-3]. Therefore, the interface speed is

v, == (b120)3,p, (1)

where the index n denotes the components of the vectors
normal to the interface outward, and d,p is evaluated at the
corresponding points of the interface y. As V-v=0 in the
(incompressible) viscous fluid, the pressure there is a har-
monic function:

VZp=0. (2)

The Gibbs-Thomson relation at the interface yields
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pl,=(w/4)oK, (3)

where o is the surface tension and K is the local curvature of
the interface, positive when the inviscid region is convex
outward. As the flow is undriven we demand

d,p=0 atr— oo, 4)

We assume that the interface has the form of a graph
y=y(x,7) and rewrite Eq. (1) as an evolution equation:

Ay (x,0) == (b*12)8,p\1 + (d,y)*
= (012w [,y (x,0)d,p - d,p], (5)

where the derivatives of p are evaluated at the interface. At
t=0 the inviscid fluid has the form of a wedge of angle «, so
that y=—|x|cot(a/2) (see Fig. 1). As this initial condition and
Egs. (2)—(5) do not introduce any length scale, the solution
must be self-similar [12]. Let L(¢) be the retreat distance of
the wedge tip. Then the interface position and the pressure in
the viscous fluid can be written as

X

y(x,1) = L(t)<1>[ m} . (6)

\y

-L(1)

FIG. 1. The setting for fluid wedge relaxation.
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respectively. We fix the coordinates by choosing y(x=0,7)=
—L(z), that is, ®(0)=-1. In the rescaled coordinates X
=x/L(r) and Y=y/L(r) the Laplace equation (2) keeps its
form, while Eq. (3) becomes

(D//(X)

PIX,Y=®d(X)]= W’

(®)
where the primes stand for the X derivatives. Now, using
Egs. (6) and (7) in Eq. (5), we arrive at the following equa-
tion:

D' (X)IxP — dyP = N[P(X) - XD'(X)], 9)

where the derivatives of P are evaluated at the rescaled in-
terface ®(X), L(t)=[(mAab*t)/(16u)]"3, and N is an un-
known dimensionless parameter. The boundary conditions
are ®(0)=—1, ®'(0)=0 and P(X— x0)=—|X|cot(a/2).
Note that we have already found the dynamic scaling expo-
nent 1/3: the same as observed in the relaxation of fractal
viscous fingering patterns [9,10]. The shape function ®(X)
(and the parameter \) for a given wedge angle « is deter-
mined by the solution of the following (quite unusual) in-
verse problem of potential theory. A harmonic function
P(X,Y) must obey both a Dirichlet boundary condition [Eq.
(8)] and a Neumann boundary condition [Eq. (9)], while the
function ®(X) must be determined from the demand that
these two conditions be consistent. We solved this problem
analytically for an almost flat wedge, and numerically other-
wise. Before reporting the analytic solution, we present a
large-X asymptote of ®(X), valid for any wedge angle. It
corresponds to the leading term of the multipole expansion
of P(X,Y) at large distances. Introduce, for a moment, polar
coordinates r,¢ with the origin at the point X=Y=0 and
measure the polar angle ¢ from the ray ¥ =—Xcot(a/2) coun-
terclockwise. At large |X| the curve Y=®(X) is almost flat, so
P[X,®(X)]—0 there by virtue of Eq. (8). Therefore, the
leading term of the multipole expansion is P(r>1, )
=const X 7’ sin(v¢p), where v=2-a/m)"' [13]. Now we
employ Eq. (9) and obtain, at |X|>1,

D(X) = — |X|cot(ar2) + C|x|"Bma/Cma) 4 ... (10)

with an unknown constant C that depends only on a.

Let us assume that 7—a <<, and introduce the small pa-
rameter & =cot(a/2)<<1. We rescale the variables: X=¢/¢,
Y=nle, P(X,Y)=£U(£,7), and A\=Ag’. In the rescaled
varaibles the interface equation is n=gi(£), where (&)
=d(¢/e). Keeping only leading terms, we can rewrite the
boundary conditions (8) and (9) for the harmonic function
U(&, n) in the following form:

Ulé.e(§)]=¢/'(§), (11)
d,ULE e ()] = AL&Y' (&) - W(&)], (12)

where
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(é— o)== +0(1).
(13)

W0)=-1, ¢'(0)=0,

The rescaled problem does not include &, except in the sec-
ond argument of the functions on the left-hand sides of Eqs.
(11) and (12). In view of the condition ¢{&— +o)=—|¢ one
cannot put the second argument to zero at sufficiently large
|&. As will be shown below, these values of ¢ are exponen-
tially large in &~', while at shorter distances one can safely
put the second argument to zero.

The problem obtained in this way is soluble exactly. As-
sume (€) is known. Then one can easily find the harmonic
function in the upper half plane >0 that satisfies the Di-
richlet condition u(&,0)=¢/"(£) on the £ axis:

L[ s
VEen=C) e

Now we should impose the Neumann condition (12) (where
we put £=0). To avoid calculation of hypersingular integrals,
we find the harmonic conjugate

L (7 (€-9)¢(s)ds

Vem=T) et

(14)

(15)

and, by virtue of the Cauchy-Riemann conditions, replace
3,U(§,0) by —d,V(£,0). This yields a nonstandard integro-
differential equation

A&y @-wol=-—of S5= 6

mdé
where f denotes the principal value of the integral. Fortu-
nately, upon differentiation with respect to & Eq. (16) be-

comes an equation for ¢/(¢) which is soluble by Fourier
transform. The result is

lifm W' (s)ds

1(~ ;
Y& =- —f KON cos k¢ dk (17)
TJ _
[the constant of integration is determined from the condition
T ' (Hdé=-2]. Integrating twice in & and using the first
two conditions in Eq. (13) yields

sin®(k&/2)

2 (~ 3
WH=-1- ;f e IHBA) —a dk (8

To determine A, we expand this expression at |&> 1:

Qs 2
+ -1+
w(3A)3 37A

where I'(w) is the gamma function [14]. To eliminate the
offset O(1) we put A=(8/3)73[T'(2/3)]*=0.213545....
Though the integrals in Egs. (17) and (18) can be expressed
via the generalized hypergeometric function ,F (a;b;z), it is
more convenient to keep the integral form [15]. To complete
the solution, we find the rescaled pressure:

W) =-1¢ X+, (19

1 oo
Ugm=-— f WM cos kg ak.  (20)
T

—0
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Now we find the distance |£=I(g)>1 at which the solu-
tion (18) becomes inaccurate, and improve the large-|& as-
ymptote. Let us compare Eq. (19), which becomes

e =~ ¢+ ]352, L<lg<le), (21

A[T(273)
with the large-|& multipole asymptote (10):
WO = |+ C(e)|ge| BmV@ma),

where, for small &, —37—a)/(2m—a)=-2+2¢/ 7. We see
that the last term in Eq. (21) lacks the small correction 2&/ 7
in the exponent of & We can match the two asymptotes (21)
and (22) in their common region of validity 1 <|& <I(e). We
define I(g) as the value of | for which the correction to the
exponent yields a factor e: I(g)=e™2) [notice that, at
|€| ~ I(g), the deviation of y(€) from its flat asymptote —|& is
already exponentially small, ~e~™¢]. The matching yields
C(g), and we arrive at the improved small-g large-|£ asymp-
tote:

g>1. (22)

l,b(f) —_ |§| + —(2&/)In 8{_—2-{-28/77. (23)

)
a[rem)Pe

So far we have dealt with inviscid fluid wedges:
a<180°. Our results, however, can be immediately extended
to viscous fluid wedges: a>180°.

Numerical algorithm and parameters. For a general
wedge angle the shape function of the self-similar interface
can be found numerically. Instead of dealing with the simi-
larity formulation of the problem (8) and (9), we computed
the time-dependent relaxation of wedges of different angles,
as described by (rescaled) Eqgs. (1)—(4) [16]. Our numerical
algorithm [17] employs a variant of the boundary integral
method for an exterior Dirichlet problem for a singly con-
nected domain, and explicit tracking of the contour nodes.
The harmonic potential is represented as a superposition of
potentials created by a dipole distribution with an unknown
density D on the contour. D is computed from a linear inte-
gral equation [18]. Computing another integral of this dipole
density yields the harmonic conjugate, whose derivative
along the contour is equal to the normal velocity of the in-
terface.

We chose the singly connected domain to be (i) a rhom-
bus with angles 120° and 60°, (ii) a square, and (iii) a
straight cross with aspect ratio 10 [16]. In this manner we
could exploit the fourfold symmetry of the domains and
measure the retreat distance of the respective vertices L(z),
and the rescaled interface shapes ®(X) for four wedge angles
120°, 90°, 60°, and 270°, the last one corresponding to a 90°
wedge of the viscous fluid. The ultimate shapes of the
rhombus- and square-shaped domains are perfect circles.
Therefore, to observe the self-similar asymptotics we did the
measurements at times much shorter than the characteristic
time of relaxation toward a circle, and at distances much
smaller than the domain size (so that the effect of the other
vertices could be neglected). For the rhombus and square an
equidistant grid with 901 nodes per side was employed. For
the quarter of the cross we used 2801 nodes. The time step
was taken to be 1073 times the maximum of the ratio of the
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10 10°® ¢ 10 10
FIG. 2. The retreat distance L(7) and its power-law fit for
a=120° (triangles), 90° (squares), and 60° (circles).

interface curvature radius and the interface speed at the same
node. The domain area conservation was used for accuracy
control. For the measurements reported here the area was
conserved with an accuracy better than 1073%.

Numerical results. We first report the results for the three
viscous fluid wedges. Figure 2 shows the retreat distance L(z)
for the angles 120°, 90°, and 60°. Power law fits yield
L(t)=0.48:"33 0.841°33 and 1.33/%%3, respectively, so
the dynamic exponent 1/3 is clearly observed. In the res-
caled units, used in the simulations [16], the analytical pre-
diction for an almost flat wedge is L(f)=at'®, where
a=(3A)"*e=0.862e. For a=120° and 90° this yields
a=0.498 and a=0.862, respectively, in very good agreement
with the measured values 0.48 and 0.84. Even for a=60° the
analytical prediction, a=1.493, is only 12% higher than the
measured value 1.33.

The rescaled shapes of the three evolving wedges are de-
picted in Fig. 3. That the curves, measured at three different
times, collapse into a single curve proves self-similarity. The
prediction of our almost-flat-wedge theory, shown on the
same three graphs, works very well for «=120° and 90°, and
fairly well even for 60°.
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FIG. 3. (Color online) Right panel: the shape function ® for
wedges of inviscid fluid: @=120° (a), 90° (b), and 60° (c). Data for
three different times [2.3 X 1077, 1.3X 107>, and 1.1 X 10™* for (a)
and (c), and 8.2X 1077, 8.9X 107, and 3.5 X 10~ for (b)] collapse
into a single curve. The (red) solid line is the prediction of the
almost-flat-wedge theory, the (blue) dashed line is the asymptote
Y=—|X|cot @/2. Left panel: a blowup of a part of (c).
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FIG. 4. (Color online) Pinch-off of a straight branch of thickness
A of inviscid fluid. Each of the two viscous fluid wedges corre-
sponds to B=90° (i.e., «=270°). The (blue) dashed lines are the
interface shape at =0; the (red) solid lines are the interface shape at
the pinch-off time #=50.65 (in the units of [16]). Inset: the mea-
sured viscous fluid retreat distance versus time and its power-law fit
0.74 % {033,

We also measured, for each of the three values of the
wedge angle, the tail of the shape function [the difference
between ®(X) and Y=—|X|cot a/2]. The results are in excel-
lent agreement with the theoretical prediction, given by the
last term in Eq. (10).

Pinch-offs. The self-similar wedge solutions are useful for
analysis of pinch-offs in UHS flows [8,9]. Let the inviscid
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fluid domain represent, at =0, an infinitely long straight
branch, coming at an angle S from an infinitely long straight
“trunk.” The simple physics in the inviscid fluid branch pre-
cludes interaction between the two viscous fluid wedges of
angles B and 7— 3, which evolve in a self-similar manner,
causing the inviscid branch to thin, and ultimately to pinch
off. The '3 law intrinsic in the self-similar solution implies
that the pinch-off time is proportional to the branch thickness
cubed. The interface shape at all times prior to the pinch-off
can be obtained, with a proper rescaling, from the corre-
sponding self-similar shape functions of the two viscous
fluid wedges. The case of 8=90° is shown in Fig. 4, where
the retreat distance, the shape function, and the pinch-off
time are taken from the previously described simulation of
the cross-shaped domain with aspect ratio 10°.

Summary. We have studied analytically and numerically
the surface-tension-driven flow of a fluid wedge in a Hele-
Shaw cell. We have shown that the fluid interface evolves
self-similarly, found the asymptotic interface shape at large
distances, and recast the problem into an unusual inverse
problem of potential theory. We solved this inverse problem
analytically in the limit of a nearly flat wedge, and performed
numerical simulations that support and extend the analytic
calculations. As in the case of self-similar solutions, obtained
for wedgelike initial conditions in other surface-tension-
driven flows [19], this solution provides a sharp character-
ization of the UHS flow. It also sheds light on the pinch-off
singularities of this flow.
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